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that for an optically thin medium

h
T,(0L)~ 4—:)—TA21NZS(v)L.

[Note that the spectrum of the emitted radiation is identical to the absorption
lineshape S(v).] This result is the basis of one method of measuring oscillator
strengths.

(d) If k,L > 1 the medium is said to be optically thick. Show that in this case
[cf. Eq. (1.2.3)]

T(L 2m?/c?
V( ) ~ ehv/k[gT — 1 ’
where T is the temperature of the medium.
(e) Discuss the evolution of the spectrum of the emitted radiation as L is
increased from a very small number to a very large one.

\

| 3.17. (a) Estimate the absorption coefficient for 589.0 nm radiation in sodium vapor
| containing 2.7 x 10"® atoms/m® at 200°C. [See J. E. Bjorkholm and A.
i Ashkin, Physical Review Letters 32, 129 (1973)].

\ (b) Assuming the same conditions as in (a), plot /,(z)/1,(0) vs. z for v = vg)z),
v = vf)?‘) + dvp, and v = v(()z) 4+ 26vp.

| 3.18. Show that for circularly polarized light, for which € = %(}% + iy), the remarks

following Eq. (3.14.1) remain correct even though (3.14.1) itself applies only
to linearly polarized light.

3.19. (a) What is the spontaneous emission rate for the helium 1Sy~2P; transition at
58.4 nm?
(b) A cell is filled with helium at a temperature of 300K, and the density is suffi-
ciently low that collision broadening is negligible. Calculate the absorption
coefficient for the 58.4-nm transition.

3.20. (a) The position vector x for an electron moving with velocity much less than ¢ in
a plane monochromatic wave € Ej cos(wt — kz) is determined by the equation
of motion md>x/dt* = e€ Ey cos(wt — kz). Show that the refractive index of
an electron gas is given by Eq. (3.14.13).

(b) Assume that in the ionosphere the refractive index for 100-MHz radio waves is
0.90 and that the free electrons make the greatest contribution to the index.
Estimate the number density of electrons.

(c) Why is the contribution of positively charged ions to the refractive index
much smaller?

(d) Choose an AM and an FM radio station in your area and compare their
frequencies to the plasma frequency of the ionosphere.

3.21. Show how Eqgs. (3.A.14)—(3.A.24) are altered if we do not make the assumption
that X21 = Xq2.

4 LASER OSCILLATION: GAIN AND
THRESHOLD

41 INTRODUCTION

In our superficial analysis of the laser in Chapter 1 we introduced certain concepts such
as gain, threshold, and feedback and indicated their importance in our understanding of
lasers. We also introduced certain coefficients (a, b, £, p), which we did not derive or
explain very carefully. In this chapter we will begin a detailed description of laser
oscillation.

The physical system we consider is a collection of atoms (or molecules) between two mir-
rors. By soynepumping process, such as absorption of light from a flashlamp or electron-
impact excitation in a gaseous discharge, some of these atoms are promoted to excited
states. The excited atoms begin radiating spontaneously, as in an ordinary fluorescent
lamp. A spontaneously emitted photon can induce an excited atom to emit another photon
of the same frequency and direction as the first. The more such photons are produced by
SUIpulated emission, the faster is the production of still more photons because the stimulated
emission rate is proportional to the flux of photons already in the stimulating field. (Recall the
discussion in Section 3.7.)

The mirrors of the laser keep photons from escaping completely, so that they can be
redn’gcted into the active laser medium to stimulate the emission of more photons. By
making the mirrors partially transmitting, some of the photons are allowed to escape.
They constitute the output laser beam. The intensity of the output laser beam is determined
by the rate of production of excited atoms, the reflectivities of the mirrors, and certain prop-
erties of the active atoms. We will see, in this chapter and the next, exactly how the laser
output depends on these quantities.

4.2 GAIN AND FEEDBACK

In Chapter 1 the.growth rate of the number of laser photons in the cavity was described
by an amplification coefficient a. It is closely related to the gain coefficient derived in
Section 3.12.

Consider‘the propagation of narrowband radiation in a medium of atoms that
have a transition frequency equal, or nearly equal, to the frequency of the radiation
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Figure 4.1  Propagation of radiation of frequency v &2 vy; in a medium of atoms with a transition

frequency voy.

(Fig. 4.1). If more atoms are in the upper level of the transition than the lower, there
will be more stimulated emission than absorption, and the radiation can be amplified
as it propagates. In such a case we say there is gain at the resonant frequency. The for-
mula (3.12.6) for the gain coefficient shows that the same lineshape function for the
medium applics for both absorption and stimulated emission. Our discussion of line-
shape functions in Chapter 3 is therefore relevant to laser media as well as absorbing
media. The only thing that distinguishes amplifying media from absorbing media is
the sign of the population inversion N> — Ny or, il the upper and lower levels have
degenceracies g- and g, respectively, Ny — (g5/81N).

Equation (3.12.10) gives an overly optimistic estimate of the growth ol intensity inan
amplifying (¢ — 0) medium, for it assumes that the gain is independent of intensity. As
mentioned in Chapter 3 in connection with that equation, this is a valid assumption only
for low intensities. In Sections 4. 11 and 4.12 we will explain what it means (o have a
“high™ intensity. and what are the implications of high intensity for the gain coclficient
¢(v). For the present, however, let us aceept the prediction of exponential growth as the
first approximation to the actual behavior of light in an amplificr.

It is reasonable to expect that a laser can be built in the form of a pencil-shaped con-
tainer of atoms for which ¢ > 0 (Fig. 4.2). The consequences of such a gecometry are
casy to predict. Some photons are emitted along the axis of the container, where they
can encounter other atoms and so induce the emission of more photons, propagating
in the same direction and with the same frequency, by stimulated emission. As the
number of such photons grows, the stimulated emission rate grows proportionately. so
that we expect a burst of radiation to emerge from cither end of the container. The direc-
tion and cross-sectional arca of the beam of light so produced are determined by the con-
tainer ol the excited atoms.

As an example. suppose we have an amplifying medium with a gain coctficient g =
0.01 em ' an achievable gain in many laser media. With alength L = 1 m for the gain
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Figure 4.2 A mirrorless “laser.” Photons emitted spontancously along the axis of the tube of excited

atoms are multiplicd by stimulated emission, resulting in a burst of radiation.
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cell. a spontancously emitted photon at one end of the cell leads, according to Eq.
(3.12.10), to an average total of

0.01em ! 5
()() Mem Hl00em) ()I ~272 4.2.1)

photons emerging at the other end. The output of such a “laser™ is obviously not very
impressive.

The way to increase the photon yield from such a device is to catch photons emerging
from one end and repeatedly feed them back for more amplification. In this way wclmi
in effect, increase the length of the gain cell. The practical way to achieve this feedback,
of course, is to have mirrors at the ends of the container. ‘

® Itis possible, in media with very high gain, (o build mirrorless (sometimes called “superra-
diant”™) lasers. The light from such a device resembles that from a conventional laser insofar as it is
bright, is quasi-monochromatic, and produces a small spot on a screen. However, it does not have
the same degree of temporal and spatial coherence usually associated with lasers. We discuss
these coherence properties in Chapter 13. .

4.3 THRESHOLD

In alaser there is not only an increase in the number of cavity photons because of stimu-
lated emission but also a decrease because of loss effects. These include scattering and
absorption of radiation at the mirrors, as well as the “output coupling™ of radiation in the
form ol the usable laser beam. To sustain laser oscillation the stimulated amplification
must be sufficient to overcome these losses. This sets a lower limit on the eain coelficient
g(v), below which laser oscillation does not occur. i

One thing we can do now is to predict, given the various losses that tend to diminish
the intensity of radiation within the cavity. what minimum gain is necessary to achieve
laser ()ﬁClI.lutl()ll. The condition that the gain coellicient is greater than or equal to this
lower limit is called the thireshold condition for laser oscillation.

Ordinarily, the scattering and absorption of radiation within the gain medium of
active atoms is quite small compared to the loss occurring at the mirrors of the laser.
We will therefore consider in detail only the losses associated with the mirrors.
Figure 4.3 shows a stylized version ol a laser resonator, that is, an empty space bounded
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Figure 4.3 The two oppositely propagating beams in a laser cavity.
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on two sides by highly reflecting mirrors. A beam of intensity / incident upon one of
these mirrors is transformed into a reflected beam of intensity 7/, where r is the reflection
coefficient of the mirror. A beam of intensity I, where ¢ is the transmission coefficient,
passes through the mirror. We might expect from the law of conservation of energy that

r+t=1, 4.3.1)

that is, the fraction of power reflected plus the fraction transmitted should be unity.
Actually, however, some of the incident beam power may be absorbed by the mirror,
tending to raise its temperature. Or some of the incident beam may be scattered away
because the mirror surface is not perfectly smooth. Thus, the law of conservation of
energy takes the form

r+t+s=1, (4.3.2)

where s represents the fraction of the incident beam power that is absorbed or scattered

by the mirror.
Each of the mirrors of Fig. 4.3 is characterized by a set of coefficients r, #, and s. At the

mirror at z = L we have
(L) = P, (4.3.3a)
and similarly

1£9(0) = r1$(0) (4.3.3b)

for the mirror at z = 0. Equations (4.3.3) are boundary conditions that must be satisfied
by the solution of the equations describing the propagation of intensity inside the laser
cavity.

What are these equations? We are now interested only in steady-state, or continuous-
wave (cw), laser oscillation. Near the threshold of laser oscillation the intracavity inten-
sity is very small, and therefore Eq. (3.12.10) is applicable. For light propagating in the
positive z direction, therefore, we have

(+) - .
v — o(v)] 4.3.4a
2 WL, ( )
near the threshold, where g may be taken to be constant. Light propagating in the nega-
tive z direction sees the same gain medium and so satisfies a similar equation (see
Problem 4.1):

are)
L= g, (4.3.4b)
dz
The solutions of these equations are
I(P@2) = [[7(0)e*”” (4.3.52)
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and
I7(2) = IS (Lexplg)(L — 2)]. (4.3.5b)

From (4.3.5a) we see that
I£9(L) = ID(0)esM: (4.3.6)
at the right mirror (z = L), and the left-going beam has intensity
I£0) = I$)(L)es™E 4.3.7)

at the left mirror (z =.O). In steady state the left-going beam has a fraction r, of itself
reflected at tl}e left mirror (at z = 0), and this fraction is just the right-going beam at
z= 0. A similar consideration applies at the right mirror. Thus, we have

[70) = nI7(0) = 1 [EVHL)] = rief@E [nIOW)]
= rne [D(0)ef™] = [rire L] 1(0). 4.3.8)

Similar manipulations, applied to any of the quantities /$(L), I{)(L), and I$)(0) lead to
the same result. Therefore, if Iff’(O) is not zero, we must have, at steady state,

rirett = 1. (4.3.9)

'.I'he steady—st.ate value of gain that allows (4.3.9) to be satisfied is also the value at
which laser action begins. For smaller values there is net attenuation of I, in the

ca\fity. Thus, the value of g that satisfies (4.3.9) is labeled g, and called the threshold
gain:

1 1 1
=—Inl— ) = —
& =57 n<r1r2) 2Lln (r1r2). (4.3.10)

This expression can be rewritten usefully in the common case that 7,7, ~ 1. Then we
definer;r, =1 — x,orx = 1 — ryr,, and use the first term in the Taylor series expansion
In(1 — x) & —x, valid when x < 1, to obtain

1
&= —2_1:(1 —riry) (high reflectivities), (4.3.11)

which is a satisfactory approximation to (4.3.10) if r;7, > 0.90. The difference between
(4.3.11) and (4.3.10) is connected with the assumption that the intracavity field is
spatially uniform: We will see in the next chapter that spatial uniformity is a good
approximation when 1 —ryr, is small, that is, when the mirrors are highly reflecting.
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Figure 4.4 A laser in which the gain medium does not fill the entire distance L between the mirrors.

Note that if we are given the mirror reflectivities r; and r, and their separation L,
and therefore the threshold gain, we can determine the population inversion necessary
to achieve laser action from (3.12.6) and the atomic absorption (or stimulated emission)
cross section.

Our derivation of (4.3.9) assumes that the gain medium fills the entire distance L
between the mirrors. This assumption is valid for many solid-state lasers in which the
ends of the gain medium are polished and coated with reflecting material. In gas and
liquid lasers, however, the gain medium is usually contained in a cell of length / < L
that is not joined to the mirrors (Fig. 4.4). In this case the threshold condition is

1 I
g = _flln (rir) ~ 2_1(1 —riry)  (high reflectivities). 4.3.12)

The threshold condition (4.3.12) [or (4.3.10)] assumes that “loss’ occurs only at the
mirrors. This loss is associated with transmission through the mirrors, absorption by the
mirrors, and scattering off the mirrors into nonlasing modes. Absorption and scattering
are minimized as much as possible by using mirrors of high optical quality.
Transmission, of course, is necessary if there is to be any output from the laser.

Other losses might arise from scattering and absorption within the gain medium
(from nearly resonant but nonlasing transitions). Such losses are usually small, but
they are not difficult to account for in the threshold condition. If a is the effective loss
per unit length associated with these additional losses, then the threshold condition
(4.3.12) is modified as follows:

1
& = —Zln(rlrz)—i—a. (4.3.13)

For our purposes these “distributed losses” (i.e., losses not associated with the mirrors)
may usually be ignored.

It is instructive at this point to consider an example. A typical 632.8-nm He—Ne laser
might have a gain cell of length / = 50 cm and mirrors with reflectivities r; = 0.998 and
ry = 0.980. Thus

~ 2(50)

& In(0.998)(0.980)cm ™' =2.2 x 10~ *cm™! (4.3.14)

is the threshold gain.
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g >

AN, — (NZ—QNI): 8mrg, &
, AzAS(v) = ) (4.3.15)

The A coefficient for the 632.8-nm transition in Ne is

A= 1.4x 1005

(4.3.16)

For T ~ 400K and the Ne i i

atomic ~ i
Doppler width e gt o Thv:/lzlght M ~ 20 g, we obtain from Table 3.1 the
S(v) ~ 6.3 x 10710
y s (4.3.17)
AN, ~ (8m(2.2 x 10~*cm™1)
(6328 x 10-8 cm)?(1.4 x 106 s71)(6.3 x 10-10)
= 1.6 x 10° atoms/cm?. 4.3

.3.18)

’

TABLE 4.1 Quantities and

Formulas Related to Gain and Threshold
The Gain Coefficient

1A
) 8
800 = — <N2 ng)S(v)

= o) (Nz - &N,)
81

¢
A= o wavelength of radiation

A = Einstej i
nstefn A coefficient for Spontaneous emission on the 2 — | transiti
n = refractive index at wavelength A o

N = i
2, N1 = number of atoms per unit volume in levels 2 and |

82,81 = degeneracies of levels 2 and 1
Sv) = lineshape function (Table 3.1)

Threshold Gain

- 1
& =Zrhn(rnn)+a 5 I=nn)+a

[ = length of gain medium
T'1, r2 = mirror reflectivities

a = distributed loss per unit length
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number of Ne atoms per cubic centimeter is [Eq. (3.8.20)] about 4.8 x 10", Thps, the raFio
of the threshold population inversion to the total density of atoms of the lasing species
is only

9
AN, 16x10° 1 (4.3.19)

N T A8x 108 3
Sometimes the quantity ¢*'is called the gain, and expressed in decibels, that is,
Gas = 10log,o (€*) = 101og,, (107434¢)) = 4.34¢l. (4.3.20)
The threshold gain in our example is, thus,
(Gap), = (4.34)(2.2 x 10" *cm ") (50 cm) = 0.048 dB. (4.3.21)

In the laser research literature gain is usually expressed in reciprocal centimeters,
although the decibel is the preferred unit in fiber optics. o ' '
In Table 4.1 we collect the formulas and terms we have used in discussing gain and

threshold.

44 PHOTON RATE EQUATIONS

To describe time-dependent phenomena, such as pulsed laser operation or the startup of
continuous-wave lasing, we must include the time derivative 01,/0t in the propagation
equation (3.12.5). For the right- and left-going waves in the laser resonator (Fig. 4.3),
we write

9]H) 9+
o, +1—d{” =g\, (4.4.1a)
Jz ¢ Ot
and
or) 1010 (=)
— — - =g, (4.4.1b)
0z +c o ¢ )
respectively. Addition of these equations gives
O o _ o L 10 e o (+) 4 (=) )
— - —— L+ =g+ 1), (4.4.2)
f)z[lu I”]+C(')I[" » ] =80,

We will see in the following chapter (Sections 5.2 and 5.5) that in many lasers th.ere is
very little gross variation of /¢ — 1) with z. Assuming this result, we approximate
(4.4.2) by the ordinary differential equation
di (1D +10] = cg)[IS7 +107]. (4.4.3)

l v v
Note that here we are assuming spatial uniformity, just as we assqme@ temporal uniform-
ity (steady state) in the preceding section. In Chapter 5 we will dlSC'USS thp temporal
steady-state rate equation that results from a more detailed consideration of the spatial
boundary conditions.
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If the gain medium does not completely fill the resonator (Fig. 4.4), then gw)=0
outside it. If we integrate both sides of (4.4.3) over z in the region 0 < z < L, then
the left side, which is independent of z, is simply multiplied by L. However, the right
side is multiplied by /, which is less than L, since g(v) is different from zero only
inside the gain medium. Thus,

d . cl B
7 B0 L] =TI + 1] (4.4.4)

is the generalization of (4.4.3) to the case [ < L. Since the number of photons inside the
cavity is proportional to the total intensity, we may also write

dqg, cl
=5 vs 4.4.
a1 gw)g (4.4.5)

where g, is the number of cavity photons associated with the frequency v.

Equation (4.4.5) describes the growth in time of the number of cavity photons as a
result of the absorption and induced emission of photons by the gain medium. The
factor cg(v)l/L is the growth rate. Of course, we must also consider the loss of cavity
photons due to output coupling, absorption and scattering at the mirrors, and the like.
We can take account of the loss associated with the output coupling of laser radiation
from the cavity, which is usually the most important loss mechanism, as follows.

Radiation reflected from the mirror at z = L (Fig. 4.3) has an intensity that is r, times
the incident intensity. After it is reflected from the mirror at z =0, therefore, it has an
intensity ryr, times its intensity before the round trip inside the resonator. In other
words, a fraction 1 — ryr, of intensity is lost. Since the time it takes to make a round
trip is 2L/ c, the rate at which intensity is lost due to the imperfect reflectivity of the mir-
rors is ¢(1 — ryrp)/2L. In terms of photons, this loss rate is

dq, :
( ; ) = =51 = nras (4.4.6)
dr output coupling 2L

The total rate at which the number of cavity photons changes is therefore

dq, <dqv> (dqv> cl ¢
—=5 = +{ — :—g('l/)ql, ——(1 —rlrl)qv
g dt gain dt output coupling L 2L

cl cl
= 7804y = 7 814 (4.4.7)

If there are significant losses besides those occurring at the mirrors, they may be
accounted for in a similar fashion. We will assume that these other losses are negligible,
in which case (4.4.7) gives the rate of change with time of the number of cavity photons.
Equivalently, we may write the rate equation

dl,
dt

c

2L

l
= ng(v)lv =57 (I =rin)l, (4.4.8)
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for the total intensity 7, = I") + I{7) inside the cavity. If we assume equal upper and
lower level degeneracies, g; = g», then we may write (4.4.8) as

dl, cI)’A c

T T - U 55 I - v

L% (N2 = NDS)! 2L( rir2)l
_d W)(N, — NI < (1 )& 4.4.9)
== LO' 1% 2 1My oL rirmit,. o

4.5 POPULATION RATE EQUATIONS

The population densities N, and N, also change in time, of course, due to stimulated
emission, absorption, spontaneous emission, and collisions. The effects of the first
three processes on the rate equations for N, and N, are given by Egs. (3.7.5).
Collisions affecting the upper- and lower-level populations are called “inelastic” in
order to distinguish them from “elastic” collisions, which do not result in a change in
the energy of the colliding atoms. To account for inelastic (population-changing) col-
lisions, we simply assert that their effect is to knock population out of levels 1 and 2
into unspecified levels at the rates I'y and I';. Thus, we replace Eqgs. (3.7.5) by

dN, o)

—= = —T[)Ny — ——1,(N — Ny) — Ay N, 4.5.1
7 2Ny —— (N2 1) — AN, ( a)
dN o

—.dtl = -V, +%1v(1v2 ~ Np) + A N,. (4.5.1b)

We must also account for the pumping process that produces the (positive) population
inversion (N, — N;). To do this most simply we add a term K to the population equations
and call it the pumping rate into the upper level. There are several methods of arranging
pumping of this kind, as discussed in Chapter 11. For the time being we simply insert a
term K. With this minor modification of the population equations (4.5.1), we have the
following set of coupled equations for the light and the atoms in the laser cavity:

dN
‘a’tl = —I'\N| +AuN; + gv)®,, (4.5.2a)
dN.
— =2+ A)N: — gW)®, +K, (45.2b)
dd, ¢l c
T 'Eg(V)‘I)v = i(l — rr)®,. (4.5.2¢)
We have used
I, = h®,, 4.5.3)

where @, is the photon flux, in rewriting (4.4.8) as (4.5.2¢).
For some purposes it is useful to rewrite Egs. (4.5.2) so that they refer to absolute
numbers, rather than densities, of atoms and photons. This is easy to do. The total
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number of atoms in level 2 is n, = N,V,, where V, is the volume of the gain medium.
Likewise the total number of atoms in the lower level of the laser transition is n; =
N,V,. The electromagnetic energy density u, in the cavity is related to intensity I,
and photon flux ®, by

15 hv
Uy =— = <—> D,, (4.5.4)
c c
and it is related to photon number g, by
hvg,
U, = s
1%

where V'is the cavity volume. These relations assume a uniform distribution of intensity
within the cavity and a refractive index n ~ 1. Thus,

P, =P

Hl

and Egs. (4.5.2) may be rewritten in the form

dn cl

T = -I'n +Ayn + Zg(v)qv, (4.5.5a)

dn cl

— =2+ Am — Z g, +p, (4.5.5b)
L

dg, cl c

s Zg(v)th = Ez(l = rrq., (4.5.5¢)

where we have used the relations

<=

and KV, =p. (4.5.6)

1~

Equations (4.5.5) imply that

d c
d—t(n2 +q)=—-T2+Au)n +p— i(l — rir2)q,. 4.5.7)

This equation has an obvious interpretation. The left-hand side is the rate of change of
the total number of excitations, that is, the number of atoms in the upper level 2 of the
lasing transition plus the number of photons in the cavity. The first term on the right is the
rate of decrease in the number of these excitations as a result of inelastic collisions and
spontaneous emission from level 2. The second term is the rate of change associated with
pumping of level 2. The last term is the rate at which excitation in the form of photons is
lost from the cavity. Note that contributions from stimulated emission (or absorption) do
not appear in (4.5.7) because they have canceled out: An increase in g, is always
accompanied by an equal decrease in n,. Further features of (4.5.7) are pointed out in
Problem 4.2.
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4.6 COMPARISON WITH CHAPTER 1

In Chapter 1, Section 1.5, we developed an intuitive quantum theory of the laser, intro-
ducing various rate constants in a largely ad hoc fashion. Now that we have develqped
rate equations for level populations and photons, it is interesting to return to this intuitive
model and examine its validity.

First recall that g(v) = o(v)(N, — N,) if the level degeneracies are equal. Thus,

a(vny
Ve

gv) = o (V)N = 4.6.1)

if there is negligible occupation of level 1: ny > n;. Now define two constant coeffi-
cients a and b:

g coW)/L _ co(v)

(4.6.2)
V, 7
and
b==(~rir) 4.6.3)
= 2L 172). U0

Then Eq. (4.5.5¢) for the photon number ¢, can be written in the compact form

dg
i LAE v — bq,, (4.6.4)
dt anq q

which is exactly Eq. (1.5.1). Recall that in Chapter 1 we identified n as the number of
atoms in level 2, here denoted n,. .

The equation for n, is easily obtained from (4.5.5b). We again invoke the assumption
ny > n; to get

% i (4.6.5)

where
f=T2+A. (4.6.6)

We see that Eq. (4.6.5) is the same as Eq. (1.5.2).

Thus, if the population inversion is large enough that N, is negligible compared to N>,
the theory developed in Chapter 1 agrees with our coupled photon-population rate
equations. If N, is not much larger than Ny, the theory of Chapter 1 requires some
minor modifications. What we were not able to do in Chapter 1, however, was to identify
the constants a, b, f, and p in terms of fundamental atomic parameters like the Einstein A
coefficient, the inelastic collision rate, the atomic absorption cross section, and mirror
reflectivities. That has now been accomplished.
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4.7 THREE-LEVEL LASER SCHEME

Thus far, we have not specified where levels 1 and 2 appear in the overall energy-level
scheme of the lasing atoms. We might imagine that level 1 is the ground level and level 2
the first excited level of an atom (Fig. 4.5). When we attempt to achieve continuous
laser oscillation using the two-level scheme of Fig. 4.5, however, we encounter a serious
difficulty: The mechanism we use to excite atoms to level 2 can also deexcite them.
For example, if we try to pump atoms from level 1 to level 2 by irradiating the
medium, the radiation will induce both upward transitions 1 — 2 (absorption) and down-
ward transitions 2 — 1 (stimulated emission).

As discussed in Section 4.11, the best we can do by this optical pumping process is to
produce nearly the same number of atoms in level 2 as in level 1; we cannot obtain a
positive steady-state population inversion using only two atomic levels in the pumping
process.

One resolution of this difficulty is to make use of a third level, as in the three-level
laser inversion scheme of Fig. 4.6. In such a laser, some pumping process acts between
level 1 and level 3. An atom in level 3 cannot stay there forever. As a result of the pump-
ing process, it may return to level 1, but for other reasons such as spontaneous emission
or a collision with another particle, the atom may drop to a different level of lower
energy. In the case of spontaneous emission the energy lost by the atom appears as radi-
ation. In the case of collisional deexcitation, the energy lost by the atom may appear as
internal excitation in a collision partner, or as an increase in the kinetic energy of the
collision partners, or both. The key to the three-level inversion scheme of Fig. 4.6 is
to have atoms in the pumping level 3 drop very rapidly to the upper laser level 2.
This accomplishes two purposes. First, the pumping from level 1 is, in effect, directly

7'y 2

Pumping Laser transition

Ground level 1

Figure 4.5 A two-level laser.

Fast decay

‘....._..___

Pumping Laser transition

1

Figure 4.6 A three-level laser. Level 1 is the ground level, and laser oscillation occurs on the 2 — 1
transition.




|

154 LASER OSCILLATION: GAIN AND THRESHOLD

from level 1 to the upper laser level 2, because every atom finding itself in level 3 con-
verts quickly to an atom in level 2. Second, the rapid depletion of level 3 does not give
the pumping process much chance to act in reverse and repopulate the ground level 1.

We will characterize the pumping process by a rate P, so that PN, is the number of
atoms per cubic centimeter per second that are taken from ground level 1 to level 3.
Thus, the rate of change of the population N of atoms per cubic centimeter in level 1 is

IN
<(ﬁ1> . @.7.1)
dt pumping

as aresult of the pumping process. Since the pumping takes atoms from level I to level 3,
and level 3 is assumed to decay very rapidly to level 2, we may also write (sce

Problem 4.3)
dN> dN; dN,
~ (423 (R — PN, (4.7.2)
dr pumping dr pumping dr pumping

for the rate of change of population of level 2 due to pumping.

Atoms in level 2 can decay, by spontancous emission or via collisions, as indicated in
population Eq. (4.5.2b) or (4.5.5b). For simplicity we will now assume that level 2
decays only into level 1 by these processes, and we will denote the rate by 1'y;. That

1S, we assume
(IN3 . (/N| .
— = —] N>, — = | N>, 4.7.3)
di decay d decay

for the population changes associated with the decay of level 2. The total rates of change
of the populations of levels | and 2 are therefore

(1N]

" —PNy + Ty Ny + o Py (N> = Ny, (4.7.42)
(
([N: R

P PN, — I'yiN> — o ® (N> — Ny). (4.7.4b)
[¢

Equations (4.7.4) imply the conservation law

d i
— (N + N2 = 0,
dt
or
N, + N> = const = Ny. (4.7.5)

By ignoring any other atomic energy levels, and assuming that level 3 decays practically
instantaneously into level 2, we are assuming that each active atom of the gain medium
must be either in level 1 or level 2. Therefore, the conserved quantity Ny is simply the
total number of active atoms per unit volume.

We can now draw some important conclusions about the “threshold region™ of

steady-state (cw) laser oscillation. Near threshold the number of cavity photons is
small enough that stimulated emission may be omitted from Egs. (4.7.4). In particular,
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we can determine from these equations the threshold pumping rate necessary to achieve
a population inversion, together with the threshold power expended in the process.
B In the steady state N, and N, are not changing in time. The steady-state values N, and
N2, therefore, satisfy Eqs. (4.7.4) with dN| /dt = dN,/dt = 0. Thus, if ®,, is so small that
the last terms in (4.7.4) are negligible, we find

P

Ny =—N
2 T | (4.7.6)

in the steady state. Since (4.7.5) must hold for all possible values of N; and N,, including
the steady-state values N| and N», we also have

N, + N, = Ny. 4.7.7)

Equations (4.7.6) and (4.7.7) may be solved for N, and N, to obtain

— I
Ny = — 2Ny d
| Py I‘ZI 7 (478 1)
and
[)
2= Ty, (4.7.8b)
The steady-state threshold-region population inversion is therefore
o —— I) — 1‘1]
N>~ N = ——=Ny. $
2 L 5, 7 (4.7.9)

To have a positive steady-state population inversion, and therefore a positive gain, we
must obviously have

P =1, (4.7.10)

which simply says that the pumping rate into the upper laser level must exceed the decay
rate. The greater the pumping rate with respect to the decay rate, the greater the popu-
lation inversion and gain.
The pumping of an atom from level | to level 3 requires an energy
Ey — £y = hvs,. 4.7.11)

The power per unit volume delivered to the active atoms in the pumping process is
therefore
Pwr

~7:lzv3;PN1 (4.7.12)

in the steady state. Using (4.7.8), we may write this as

Pwr N /’IV}]P]‘N N
v = Pl - (4.7.13)
Now from (4.7.10) we may regard

Pmin - er (4.7.14)
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as the minimum pumping rate necessary to reach positive gain. Substituting P, for P in
(4.7.13), we obtain

<E¥>min: ‘;—FZ‘NTI’ZV:H (4715)
as the minimum power per unit volume that must be exceeded to produce a positive gain.
With this amount of pumping power delivered to the active medium, we see from (4.7.8)
(with P = P, = I'5)) that half the active atoms are in the lower level of the laser tran-
sition and half are in the upper level. A pumping power density greater than (4.7.15)
makes Ny > N,.

4.8 FOUR-LEVEL LASER SCHEME

Another useful model for achieving population inversion is the four-level laser scheme
shown in Fig. 4.7. Pumping proceeds from the ground level O to the level 3, which, as in
the three-level laser, decays rapidly into the upper laser level 2. In this model the lower
laser level 1 is not the ground level, but an excited level that can itself decay into the
ground level. This represents an advantage over the three-level laser, for the depletion
of the lower laser level obviously enhances the population inversion on the laser tran-
sition. That is, a decrease in N, results in an increase in N, — Nj.

As in a three-level laser the decay from level 3 to level 2 is ideally instantaneous, that
is, extremely rapid compared to any other rates in the population rate equations. Then we
may take N3 =~ 0, and the population rate equations for the four-level laser take the form

dN
Hd—to = —PNy + I'1oN1, (4.8.1a)
dN,
7 ~T'1oN; + T'21N2 + o (v)(N2 — N, (4.8.1b)
dN.
7#_2 = PNy — I';1N> — o (W)(N2 — NP, (4.8.1¢)
A | 3
': Fast decay
y 2
Pumping Laser transition

!
| Fast decay

0

Figure 4.7 A four-level laser. The lower laser level 1 decays into the ground level 0.
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where- P is again the pumping rate out of the ground level 0, and PN is the upper level
pumping rate denoted by K in (4.5.2). I';; and I'y are the rates for the decay processes
2 — land 1 — O, respectively, and we have made the same approximation (4.7.2) for

the pumping process as in the three-level case. Note that Eqs. (4.8.1) imply the conser-
vation law

No + Ny + N, = const = Ny. (4.8.2)

If the stimulated emission rate is very small compared to the pumping and decay rates,
Eqgs. (4.8.1) give the steady-state populations

No = Lol N 4823
Iol'yy +ToP + TP T’ (4.8.32)

— [y P

N{ = Nr, 8.
Tl + TP+ TP (4.8.30)

_ I'oP

N, 10 Nr. (4.8.3¢)

" Tyola + TP + Ty P

The steady-state population inversion of the laser transition is therefore (Problem 4.4)
P(I'yo — 2Ny
Tl +ToP + TP

N, —N, = (4.8.4)

Thus, the pumped (P # 0) four-level system will always have a steady-state population
inversion when

o > Ty, (4.8.5)

that is, when the lower laser level decays more rapidly than the upper laser level. When
we have

[>T, P, (4.8.6)
then No =~ Ny, N; =~ 0 and Eq. (4.8.4) reduces to
N, —N,~N, = J;NT. 4.8.7)
P41y

4.9 PUMPING THREE- AND FOUR-LEVEL LASERS

It is interesting to compare the pumping rates necessary for laser oscillation in the three-
and four-level lasers. To achieve laser oscillation, we must produce a gain larger than the
threshold value g,, and therefore a population inversion greater than AN,, where

g = o(v)AN, 4.9.1)

is the threshold gain for frequency v. Setting N, — N equal to the threshold inversion in
(4.7.9), we obtain

N7 + AN,
(Pt)three-level laser = Iﬁ Iy (4.9.2)
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for the threshold pumping rate for laser oscillation in the three-level laser. From (4.8.7),
on the other hand, the pumping rate necessary for a four-level laser satisfying (4.8.6) is

AN
(P)four-tevel taser = mrm (4.9.3)
The ratio of (4.9.3) to (4.9.2) is
(Pl)four-level laser __ AN!‘ (4.9.4)

(Pr)three—level laser B NT + ANI .

Ordinarily, the population inversion (at threshold or otherwise) is very small compared
to the total number of active atoms; recall our example near the end of Section 4.3. From
(4.9.4), therefore, we see that

(Pt)four~lcve] laser < (Pt)three—level laser* (495)

Thus, a much larger pumping rate is necessary to achieve laser oscillation in a three-level
laser than in a four-level laser.

In the three-level laser the pumping power density necessary to establish the threshold
inversion AN, is

Pwr
<(__.,.&> = hv3 (N, )r(Pr)threc-level laser> (4.9.6)
4 three-level laser

where (N)), is given by (4.7.82) with P = (P)ree-level laser- Assuming AN, < Ny, we
conclude from (4.9.2) that

(Pt)three-level laser ~ [y, 4.9.7)
and from (4.7.8) that
N
(N), =~ (4.9.8)

Equation (4.9.6) therefore becomes

<(PWI‘),> -~ l
14 three-level laser 2

which, because of the approximation AN, < Ny, is the same as (4.7.15). Thus, when
AN, < Ny the minimum pumping power density necessary to achieve positive gain
is approximately the same as that necessary to reach threshold and laser oscillation. In
the four-level case, on the other hand, we obtain

hV3|NTF2|, (499)

(Q)_‘jﬂr) ~ hvyo AN, Ty, (4.9.10)
4 four-level laser
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for AN, < Nr. The ratio of (4.9.10) to (4.9.9) is

[(Pwr)t/ V]four-level laser 2V3O AN, t
[(Pwr)t/ V Jtnree-level laser V31N

4.9.11)

if we take the upper-laser-level decay rate I, to be the same in the two cases. This shows
again that, other things being roughly commensurate, much less power is required to
achieve laser oscillation in the four-level case.

4.10 EXAMPLES OF THREE- AND FOUR-LEVEL LASERS

Real lasers seldom fit very neatly into our three- and four-level categories. However,
these idealizations sometimes provide a useful framework for rough estimates of
pump power requirements. We will illustrate this for cw ruby and Nd: YAG solid-
state lasers, which are approximately three-level and four-level systems, respectively.

Ruby was the gain medium for the very first laser, but the ruby laser has largely been
replaced by other, more efficient solid-state lasers. It nevertheless illustrates nicely the
concept of a three-level laser. As mentioned in Section 3.1, ruby is the crystal Al,O;
with chromium ions (Cr’™") replacing some of the aluminum ions (AI’"); the concen-
tration of chromium is only about 0.05% by weight. The relevant energy levels for
the ruby laser are those of the Cr>" ion in the host crystal lattice. The laser is optically
pumped, that is, a population inversion is obtained by the absorption of radiation from
another laser or a lamp, typically a high-pressure Xe or Hg flashlamp (Section 11.12). It
is approximately a three-level laser, although the third “level” really consists of two
broad bands of energy, both decaying rapidly (rate ~ 10’ s™') into the upper laser
level 2. At room temperature the decay rate of the upper laser level is

[y~ 4 x10°s7h (4.10.1)
The density of “active atoms” (i.e., Cr’™" ions) is (Problem 4.5)

Nr~ 1.6 x 10 cm™. (4.10.2)

The excitation energy required from the pump, the energy difference between the ground
level and the lower pump band, is about 2.25 eV, corresponding to a wavelength of about
550 nm (green). From (4.9.9), therefore, the minimum pumping power density necess-
ary to achieve nonnegative gain [and also, according to (4.7.15), approximately the
pumping power density necessary for laser oscillation] is

Pw 1/1
<_‘_/I> ~ <§ x 103 s‘1>(l.6 x 10" cm3)(2.25eV) ~ 1kW/cm®.  (4.10.3)

mi)
For a 5-cm-long ruby rod of radius 2 mm, the required pump power is

1 kW
cm3

Pwr ~ ( ) ar (0.2cm)*(5cm) = 600 W. (4.10.4)
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This is a rather large amount of power. In fact, much more power is actually required to
operate a cw ruby laser because (4.10.4) only gives the power that must actually be
absorbed by the Cr’ " ions. In reality only a small fraction (typically ~ 0.1%) of the elec-
trical power delivered to the lamp is converted to useful laser radiation.

It is also interesting to estimate the population inversion necessary for threshold gain
in a typical ruby laser. At room temperature the 694.3-nm laser transition has a
Lorentzian lineshape of width (HWHM)

ovp =~ 170 GHz, (4.10.5)

and the A coefficient for spontaneous emission is
A~ 2305 (4.10.6)
The line-center cross section for stimulated emission is therefore

CNA
T=gm? vy

~2.7x 107% cm?, 4.10.7)

where we have used the value n = 1.76 for the refractive index of ruby. If we assume a
resonator with mirror reflectivities r; = 1.0 and r, = 0.96, and a scattering loss of 3%
per round-trip pass through the gain cell, then the threshold gain for laser oscillation
is [Eq. (4.3.13)]

— 1l 0.03
g = ———1In(0.96) + =7.1x103cm™! (4.10.8)

2(5cm) 2(5cm)

for a ruby rod 5 cm long. From (4.3.15), (4.10.7), and (4.10.8), therefore, we calculate a
population inversion threshold

7.1 x 103 cm™!
AN ~ 5o m oy = 26 % 107 em ™. (4.10.9)
This is much larger than the sort of population inversion necessary for a typical He—Ne
laser [Eq. (4.3.18)]. The difference stems from the much larger stimulated emission
cross section of the 632.8-nm laser transition of Ne, which in turn results from the
much larger A coefficient and much smaller linewidth than in ruby. This illustrates an
important point: Gas lasers obviously have a much smaller density of atoms than
solid-state lasers, but this does not necessarily mean that they have smaller gains. In
fact, many of the most powerful lasers are gas lasers. The reasons for this are discussed
in Chapter 11.

In the 1.06-pm (1064-nm) Nd : YAG laser, the active atoms are also impurities in a
crystal lattice, in this case Nd*" ions in yttrium aluminum garnet (Y3AlsO,,, called
YAG). The Nd: YAG laser is approximately a four-level system, with upper-level
decay rate

[y ~ 4400s7! (4.10.10)
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and stimulated emission cross section’
o~3x 107" cm? (4.10.11)

at room temperature. If we assume the same threshold gain (4.10.8) as in our calculation
for the ruby laser, we obtain a population inversion threshold

_7.1x10%cm™!

R ~2x10%cm3

which, because of the relatively large stimulated emission cross section for Nd**, is con-
siderably smaller than the value (4.10.9) for ruby.

The pump “level 3” for the Nd : YAG laser is actually a series of energy bands located
between about 1.63 and 3.13 eV above the ground level. If we take the energy difference
E3 — Eo in our four-level model (Fig. 4.7) to be the average value, 2.38 eV, we obtain
from (4.9.10) the pumping power density for threshold:

(PWD)in
v

~ 30 W/cm’. (4.10.13)

For a 5-cm Nd: YAG rod of radius 2 mm, therefore, the threshold pump power is

Pwr ~ 20W, (4.10.14)

much smaller than the estimate (4.10.4) for ruby.

4.11 SATURATION

We remarked in Sections 3.12 and 4.2 that exponential growth of intensity in a gain
medium is only an approximation, and that the approximation breaks down when the
1nFensity is sufficiently large. Exponential attenuation in an absorbing medium is like-
wise a low-intensity approximation.

To understand this, let us return to the rate equations (3.7.5) for the populations of two
nonde.:genemte levels. No upper-level pumping processes are included in these
equations, only absorption and stimulated and spontaneous emission. We further
assume _t_hat the intensity /, of the field is constant in time. The steady-state solutions
N> and N, obtained by setting the derivatives equal to zero are easily found to be

— o), /hv Lr,

Ny = _ b/ , (4.11.1a)
Ay + 20 (W)L, /by 1+ 1,/I5

= Ay +oWl,/h 1411,/

N, = / = 1hv/ N, (4.11.1b)

A +20WL /v L+ 1T

1 P . .
There are significant differences in reported measurements of these parameters for Nd : YAG, and the esti-
mates used here should be considered reliable only to within about a factor of 2.
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where N = N; + N, = N; + N, and

Ao (4.11.2)
v 20 (v)
is the saturation intensity. The absorption coefficient is then
aw) = cW)F; — W) = —20_ (4.11.3)
1+1,/I
where
ap(v) = o (V)N (4.11.4)

is the small-signal absorption coefficient, the absorption coefficient when the intensity
1, is small compared to I*. In this case Ny ~ N and N, ~ 0, that is, practically all the
atoms are in the ground level 1.

As I,/I* increases, the absorption coefficient “saturates,” becoming smaller and
smaller as I, increases. For I, > I', Ny ~ N, ~ N/2. In this strongly saturated
regime the (equal) rates of absorption and stimulated emission are so large that the
atoms are equally likely to be found in the excited level as the ground level. The
larger I$*, the larger the field intensity 7, has to be to produce significant saturation of
the transition. Saturation of an absorbing transition arises from the excitation of the
upper level, which increases stimulated emission and reduces the absorption.

As discussed in the following section, the gain coefficient of an amplifying medium
exhibits essentially the same saturation behavior. In this case the saturation arises from
the growth due to stimulated emission of the lower-level population, which enhances
absorption and thereby reduces the amplification of the field. The dependence of g(v)
on I, means that the solution of Eq. (3.12.9) is not the simple exponentially growing
intensity (3.12.10). The correct solution, which is given in the following chapter,
grows exponentially with z only as long as I, is small compared to I;*'. The exponential
attenuation in an absorber is likewise a valid approximation only for intensities small
compared to [3*. The saturation intensity, whose numerical value is determined by
the transition cross section and rates, thus provides the measure of whether a given
field intensity is “large” or “small” in terms of its ability to saturate the transition.

A different, somewhat more restrictive interpretation of saturation is possible.
Consider a homogeneously broadened transition having a Lorentzian lineshape of
width dv,. After some simple algebra, using Egs. (4.11.2), (4.11.3), and (3.7.4), we
find that

N4y (1/m)8vo ap(v9)dv3
— =,

— 4.11.5)
87 (v —w) + 81)62 v =) + ov;; (

a(v)

where we define

8vy = dvoy /1 + 1, /I (4.11.6)
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We see that, in effect, the width Sy, of the transition is increased by the factor

1+1, /Igf;‘. In other words, we can interpret the saturation of the transition with

increasing intensity as an effective “power broadening” of the linewidth.

Saturation will always occur at sufficiently high intensities, regardless of whether the
transition is homogeneously or inhomogeneously broadened. The saturation intensity
(4.11.2), because of its dependence on o (v), will vary with the lineshape function
S(v). For a Doppler-broadened transition, for instance,

. hvA 4m2h I
e SRLELPY 4.11.7)
° 2(A°Az /8mS(vo) A 47In2

at line center (v = vg), whereas for a transition with a Lorentzian lineshape (3.4.26),

st 472 he

Vo A 3

Svy. (4.11.8)

These formulas are based on the assumption that spontaneous emission is the only
(intensity-independent) decay process for the upper level of the transition, and that
the lower level is the ground level of the atom. In general the saturation intensity will
depend on both upper- and lower-level decay rates associated with collisional as well
as radiative processes, and it can also depend on the level degeneracies. Here we are
less interested in the detailed form of I;* as we are in the fact that the absorption and
gain coefficients saturate, in many situations of practical interest, as 1/[1 + 1,/I}*],
whatever the form of I;*. In the following section we will derive saturation formulas
specifically for the gain coefficient of our idealized three- and four-level lasers.

Although they account only for radiative excitation and deexcitation processes, the
formulas obtained here for I;* are nevertheless useful in their own right. Consider as
an example the absorption by sodium vapor of radiation resonant with the
381 )2(F = 2) < 3P3, transition: v = vf)z) in the notation of Section 3.13. For
Doppler broadening at T = 200K, we calculated in Section 3.13 the Doppler width
ovp = 1 GHz. Then, from (4.11.7),

[~ 13W/em’. (4.11.9)
If instead we assume radiative broadening, for which dvy = A, /4 (Section 3.11), then

Th

e %?EAZI = 19mW/cm’, (4.11.10)

where we have used A,; = 6.2 x 10" s~ for the spontaneous emission rate of the sodium
D line (Section 3.13). These results do not account for the level degeneracies and hyper-
fine structure, and thus do not include factors such as g,/g; or 3 or 3
appearing in Eq. (3.13.9). However, because these omissions give rise only to factors
of order unity, the numerical values for I3* are of the correct magnitude. The large dis-
parity in these two saturation intensities is not unusual; saturation intensities can vary

widely for the same absorbing or emitting atoms, depending on the physical situation.
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e Saturation of an atomic transition has been observed rather directly in experiments using a
sodium beam. Well-collimated atomic beams are formed by those atoms that have passed from
an oven (used to produce a vapor) through two (or more) successive pinholes. Irradiation by a
laser beam propagating at a right angle to the atomic beam nearly eliminates any Doppler broad-
ening and results, typically, in purely radiative broadening of the resonant transition. By moni-
toring the intensity of the spontaneously emitted radiation, one can infer the dependence of the
excited-state population on the laser intensity or frequency.

As discussed in Section 14.3, it is possible to “align” atoms by irradiating them with
polarized light. For instance, if a sodium beam is irradiated with circularly polarized laser radi-
ation, it can be “aligned” such that only transitions between the two states 3S; j2(F = 2, M = 2)
and 3P;/,(F = 3, M = 3) are possible. For this transition the saturation intensity 1:3‘ can be
shown to be thA21/3A3, that is, 6.3 mW /cm?, or one third the value given by Eq. (4.11.10),
which assumes no alignment (Problem 14.8).

The FWHM radiative linewidth of the sodium D5 line is [Eq. (3.11.2)] 28vy = Ay, /27 =
10 MHz. According to (4.11.6), therefore, the power-broadened radiative linewidth (FWHM) of
the 38, /,(F = 2, M = 2) < 3P3(F = 3, M = 3) transition should be

dvy ~ 10y/1+1,/6.3 MHz, (4.11.11)

where I, is the laser intensity in units of mW/ cm?. Measurements of vy for I, = 0.84, 3.5, 90,
and 170 mW /cm? gave 8v), = 12.4 + 0.8, 13.8 £ 0.9,41.2 + 1.8, and 53.7 + 2.8 MHz, respect-
ively, in good agreement with the variation predicted by (4.11.1 1).% The dependence of the scat-
tered intensity on the laser intensity at resonance, similarly, was found to be well described by the

factor 1/[1 + 1,/I]. .

4.12 SMALL-SIGNAL GAIN AND SATURATION

Equation (4.7.9) gives the steady-state population inversion for a three-level laser when
the stimulated emission rate is negligible. In general, of course, the stimulated emission
rate is not negligible, and here we consider the steady-state population inversion in the
more general case. For this we require the steady-state solutions of Egs. (4.7.4). These
may be obtained by noting that the following replacements for P and I';; (in the
equations without stimulated emission),

P— P+o®d,, (4.12.1a)
Iy — I';y+ 09, (4.12.1b)

are sufficient to reinstate all stimulated-emission terms. Here @, is the steady-state (i.e.,
time-independent) cavity photon flux. Thus, the steady-state solutions of (4.7.4) may be
obtained by making the same replacements in the solutions (4.7.8). Likewise the steady-
state population inversion N, — N in the general case follows when the replacements

(4.12.1) are made in (4.7.9):

(P — TNy
P+T5 + 200,
This is the generalization of (4.7.9) to the case in which the stimulated emission rate is
not negligible compared to P and I';.

N, —N; = (4.12.2)

2M. L. Citron, H. R. Gray, C. W. Gabel, and C. R. Stroud, Jr., Physical Review A 16, 1507 (1977).
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( |' 12‘2)' 4 ‘Ssu"lulg g] gl’ we ha‘e ( )

o) = o (W)(P —T'y)Ny _ 0P =Ty)Ny 1
P+F21 +2()’(V)q),, P+F21 1 +[20(v)<1>,,/(P+lﬁ2])]
o) g
L+ ®, /& 1+, /120 St

where we define the small-signal gain

o) = ZOP = Loy

PiTs (4.12.4)
and the saturation flux
Pt — P+ FZ]
) 200) (4.12.5)

The corresponding ex ions f S
pressions for the s: ;
Problem 4.7) saturation intensity and photon number are (see

sal st hv(P+T, )
1 : = h at =] *M"]
= hyd? ) 4.12.6)

and

¢t = X(piat _P+Ty

¢ T 2co(v) (4.12.7)

The gain coefficient for the three-leve] laser, therefore, saturates
311: ta‘s(s)ocrgst;c;n cocelf?fmem .(fl.l 1.3? ofa twp—level transition. The saturation intensities in
! < 'are ifferent; in pgnxcu]ar, Iff" for the three-level laser depends not only on

v/o (v) but also on the pumping rate P and the decay rate I',, ’
' For”lv << [;a‘,ﬁg(.v) ~ go(v), which, of course, is why g()(v') is called the
signal” gain coefficient. The maximum gain is go(vy), that is, the gain when / I
and the field frequency matches the line-center frequency v, \;/here o(vp) h o G
mum value. When the lineshape is Lorentzian, with HWHI\;I width 8v00 wea;:\femam-

in the same way as

“small-

1
(vo — v)2/5v3 + 1+ (D,/P

Vo

8() = go(vy)

: (4.12.8)

N ;1‘1}:; ;::Z;;y frequeﬁlciis at which there is small-signal gain sufficient to overcome loss
generally those within about Sy, of line cent = vp);

the small-signal gain bandwidth. In Secti ! by wae o can be calld
' ' . ction 1.3 we showed by way of

the gain bandwidth and the cavity mod i Tine the number of ar.

ible Troquoncies o e €2 y € spacing together determine the number of poss-

In Fig. 4.8 we plot g(v) vs. v as given i

- Vas given in (4.12.8) for several values of ® and S

i)lvtef;)nr ieve;ral yalugs of v. Clearly, it is harder to saturate g(v) away fror;; lineggtzt\;.

atively, for higher fluxes the halfwidth of g(v) is greater. This is exactly thé
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Figure 4.8 Saturated gain curves, according to Eq. (4.12.8).

same as the power broadening discussed in Section 4.11. The power-broadened gain
bandwidth is the half width implied by (4.12.8), namely

vy = vy /1 + B, /D% (4.12.9)

Vo

It is greater than the small-signal gain bandwidth and is seen to be exactly the width §v6
given in (4.11.6), as it should be, if we put P =0 and I';; = A, in the expression
for @,

In the case of a four-level laser we can obtain in a similar fashion a gain with the flux
dependence (4.12.3), but with a saturation flux twice that given by (4.12.5) (Problem 4.8).
The same basic flux dependence is also obtained when we include degeneracy and
refractive index corrections to the gain coefficient (Section 3.12).

Three- and four-level lasers are idealizations that are seldom fully realized in practice.
The gain—saturation formulas (4.12.3) and (4.12.8) are, however, applicable to a wide
variety of actual lasers. That is, although (4.12.3) may be derived from simple
models, it often applies outside the range of validity of these models. It is the most com-
monly assumed formula for the intensity dependence of the gain on a homogeneously
broadened laser transition. In Section 4.14 we will consider the case of an inhomogen-
eously broadened transition.

In Eq. (4.12.5) P and I';; are the “decay rates” of the lower and upper laser lev§:ls,
respectively [cf. Eqs. (4.7.4)]. The larger the decay rates, the larger the saturation
flux. This makes good sense physically, for the larger the decay rates, the larger must
be the stimulated emission rate necessary to saturate the transition, that is, to equalize
the population densities N; and N;. In fact the saturation flux (4.12.5) for a three-
level laser is just the intensity for which the stimulated emission rate is the average of
the upper- and lower-level decay rates (Problem 4.8). In general, the larger these
decay rates, the larger the saturation flux. Equation (4.12.5) is an example of this general
result.

In most cases of practical interest the pump rate P is small compared to I';; in a three-
level laser and to I'y; and I'; in a four-level laser. Then

sat ~ th21

o (three-level laser) (4.12.10)
v 20 (v)
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and (Problem 4.8)

th21
o((v)

sat ~y
_——

(four-level laser). 4.12.11)

The relation o (v) o< By; [recall (3.12.18)] means that the saturation flux (4.12.5) is
inversely proportional to the Einstein B coefficient for stimulated emission. This is
another general result and is hardly surprising because the smaller B, is, the greater
the intensity necessary to achieve a given stimulated emission rate. For a Lorentzian line-
shape function, (4.12.5) also predicts that the line-center saturation flux is directly pro-
portional to the transition linewidth 8v:

P+ F21 N 477251)0
N 20(vy) A%A

sat __

(P+T5)). (4.12.12)

This too is a general conclusion that is applicable beyond the three- and four-level
models.

The most important results of this section are Egs. (4.12.3) and (4.12.8). We have
obtained these results for the specific case of an ideal three-level laser, but we have
emphasized that they apply to a large variety of real lasers under conditions of homo-
geneous line broadening. Whereas the detailed equations for the small-signal gain
and saturation intensity are specific to the particular laser under consideration, the
expressions (4.12.3) and (4.12.8) are more generally applicable. Indeed, it will usually
be difficult to calculate g, and I3, but we can often be confident nevertheless that the
form of the intensity dependence of the gain described by (4.12.3) or (4.12.8) is correct.

We emphasize that these equations are applicable regardless of whether g, is positive
(gain) or negative (absorption). That is, a medium may be saturated regardless of
whether it is amplifying or absorbing. Thus, the absorption coefficient a(v) of an absorb-
ing medium will decrease as the intensity of the radiation is raised, as discussed in the
preceding section. When the intensity is much larger than the line-center saturation
intensity /}* characteristic of the medium, the absorption coefficient is very small
[a(v) = 0], which means that the medium is practically transparent to high-intensity radi-
ation. In this case the medium is sometimes said to be “bleached” because it no longer
absorbs radiation that is resonant with one of its transition frequencies. What is happen-
ing in the case of such strong saturation is that the stimulated emission (and absorption)
rate has become much greater than the decay rate of the upper level of the transition. An
atom that has absorbed a photon will then be quickly induced to return to the lower level
and give the photon back to the field by stimulated emission. This occurs, with high
probability, before the absorbed energy can be dissipated as heat or fluorescence.
Thus, no energy is lost by the incident field; the medium has been made effectively trans-
parent (“bleached”) by virtue of the high intensity of the field.

4.13 SPATIAL HOLE BURNING

In this section we will consider more carefully the meaning of the “intensity.” Intensity
refers to the electromagnetic energy flow per unit area per unit time, but in most lasers we
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have standing waves rather than traveling waves. The gain—saturation formulas (4.12.3)

and (4.12.8) are often written with ®,, assumed to be the sum of the fluxes of the two
traveling waves (Fig. 4.3):

®, — &, =0 + o). (4.13.1)
However, this is not quite correct, for it ignores the interference of the two traveling
waves. The electromagnetic energy density u is proportional to the square of the electric
field:>

u = EX(r, 1) = Ej cos® wt sin® kz. (4.13.2)

We replace cos? wt by %, its average value over times long compared to an optical period
2w ~ 10~ s, and write

u= %Eg sin? kz. 4.13.3)

Now a cavity standing-wave field is the sum of two oppositely propagating traveling-
wave fields:

E(z, t) = Eg cos wt sinkz = 3Eo[sin(kz — wt) + sin(kz + wr)]
=E (2, ) +E_(z,0), (4.13.4)

where the two electric waves
E.(z, 1) = 3Eqsin(kz F wt) (4.13.5)

propagate in the positive (+) and negative (—) z directions. The time-averaged square of
the electric field (4.13.5) gives a field energy density u = u™ + u(~), where

u® :%Eé. 4.13.6)

From (4.13.3) and (4.13.6), therefore, it follows that

q)v = ilg—u = 2[@?—) + (DS}_)] sin2 kZ, (4137)
v

or, in terms of the intensity I, = hv®,,
L =2[I$P + I0] sin® kz. (4.13.8)

Thus, it is not correct to use (4.13.1) as the flux in the gain saturation formulas
(4.12.3) and (4.12.8). We should use (4.13.7), which accounts properly for the

3For simplicity we assume in this section that the refractive index n =~ 1.
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Figure 4.9 Spatial hole burning in the gain curve, according to Eq. (4.13.9).

interference of the two traveling-wave fields. Then the gain—saturation formula for a
homogeneously broadened transition is

8o(v)
1+ 2[(D57 + @) /5] sin? k'’

gv) = (4.13.9)

This saturation formula replaces (4.12.3) when the standing-wave nature of the cavity
field is properly accounted for.

The sin” kz term in Eq. (4.13.9) gives rise to what is called spatial hole burning in the
gain coefficient g(v). At points z for which sin®kz = 0, g(v) takes on its maximum value,
namely the small-signal value go(v). Where sin® kz = 1, however, g(v) has its minimum
value, that is, it is most strongly saturated; a “hole” is “burned” in the curve of g(v) vs. z
(Fig. 4.9). The holes in this curve are separated by Az = mr/k = A/2. Thus, g(v) varies
with z on the scale of the laser wavelength.

This rapid variation of g(v) with z suggests the approximation of replacing sin® kz by
its spatial average, % in Eq. (4.13.9). In this approximation we take

8o(»)
L+ (@Y + @) /o5

gv) = (4.13.10)

which is the result obtained by using (4.13.1) in the gain—saturation formula (4.12.3).
This approximation ignores the spatial dependence of the intracavity field and, therefore,
also the spatial hole burning of the gain coefficient. It is called the uniform-field approxi-
mation or the spatial mean-field approximation.

414 SPECTRAL HOLE BURNING

In an inhomogeneously broadened medium the different atoms have different central
transition frequencies vj. This may be due to their different velocities and the
Doppler effect (Section 3.9), the presence of different isotopes having slightly different
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Figure 4.10 Spectral hole burning in an inhomogeneously broadened gain profile. Radiation of
frequency v, saturates only a spectral packet of atoms with frequency v =~ v,.

energy levels, spatially nonuniform electric and magnetic fields causing shifts in the
energy levels, or a host of other effects.

Saturation of the absorption or gain coefficient is more complicated in the case of
inhomogeneous broadening. Atoms with different central frequencies vy, will be satu-
rated according to (4.11.5), but there is a distribution of resonance frequencies Vp.
The absorption or gain coefficient is obtained by integrating the contributions from
different frequency components, or spectral packets, each of which saturates to a differ-
ent degree depending on its detuning from the cavity mode frequency v.

Equation (4.11.5) implies that the absorption or gain is more strongly saturated for
spectral packets with frequency vj & v; spectral packets with frequencies detuned
from v by much more than the homogeneous linewidth are hardly saturated at all.
This is illustrated in Fig. 4.10. The selective saturation leads to spectral hole burning
in the gain curve. The width of a hole is just the homogeneous linewidth &v, (if
power broadening is small), while the depth is determined by the field intensity.
When the field intensity is very large the hole “touches down,” that is, the gain at the
center of the hole is fully saturated.

Spectral hole burning is especially interesting in the case of a purely Doppler-broad-
ened gain medium.* Suppose the cavity mode frequency v is different from the center
frequency v, of the Doppler gain profile. Consider, for example, the traveling-wave
field propagating in the positive z direction. This wave will strongly saturate the spectral
packet of atoms with Doppler-shifted frequencies v, = v; the Doppler effect has brought
these atoms into resonance with the wave. Therefore these atoms have the z component
of velocity given by (cf. Section 3.9)

v:%:vO(1+E>’ (4.14.1a)
C
or
RELETL (4.14.1b)
C Vo

where v is the resonance frequency of a stationary atom. If v > vy, then v is positive.
This means that the atoms that have been Doppler shifted into resonance are moving in

4Spectral hole burning is the origin of the Lamb dip in Doppler-broadened lasers, as discussed in Section 5.8.
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the positive z direction, the same direction in which the traveling wave is propagating. If
v < vy, on the other hand, v/c is negative, or in other words the atoms must be moving
in the negative z direction, opposite to the traveling wave, in order to be shifted into
resonance.

Consider the saturation of the gain coefficient when there is Doppler broadening. For
simplicity we will assume a single traveling wave of frequency v. With atoms of velocity
v along the z direction we associate the saturated gain coefficient

NAy P — Ty dvo/m
g, v) = T 5 >
8m P+T2  (vo—v+wvov/e) + 8v§
o
=C vo/™ (4.14.2)

(vo — v +vov/c)’ + &v?

that follows from the three-level laser model (Section 4.12) with the Doppler shift
included in the (power-broadened) Lorentzian lineshape function. We now calculate
the total gain coefficient due to atoms of all velocities by integrating over the
Maxwell-Boltzmann distribution for atoms of molecular weight My, exactly as in
Section 3.9:

00 M 1/2 5

_ C< Mx )l/zﬁvo ro dp e~Mx*/2RT
27RT T ) oo (Vg — v+ vov/C)? + v

4In2 vy [©  dye™”
_ Y0 J ye (4.14.3)

2 53 ) x+ ) + b2

where we have made the same change of variables as in Section 3.10 and defined x as in
Eq. (3.10.4); b’ is defined by replacing év, by év,, in (3.10.5):

ov,
by = (@4In2)/2 2% (4.14.4)
81)[)
As in Section 3.10 it is convenient to consider the case x = 0, the case where the field

frequency v exactly matches the central frequency v, of the Doppler lineshape. Then,
using (3.10.7),

41n2 évy T

= 5

/: 41m2\'? & I
& erfc(b’):C( ; ) YO erfeb)).  (4.14.5)

Suppose first that the transition is Doppler broadened and the intensity of the field is
well below saturation, so that dvp > dvy, dv, & dvg,and b’ =~ (41n 2)'/281)0/51)1) < 1.
Then, from (3.10.12), we obtain

— =g (w), (4.14.6)

4102\ 1
SVD

g(V)%C<

w
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where gg) )(vg) is the small-signal gain at v = v, for Doppler broadening. If dvp > ov,
but 8v, differs significantly from &v, then " < 1 and we can still use (3.10.13), but
now

410 2\'? 8v, 41 2\"? 1 1
g~ C =C T
o 51)1)8118 w 8VD 1+ Ivo/ligt
_ &) (4.14.7)

1+ Ly /I

Thus, a Doppler-broadened transition saturates not as 1/[1+1L,/I;X] but as

1/, /1+ 1, /I3 This is true so long as &v, is not too large: if dv, > dvp, then the
approximation (3.10.10) [with & replacing b] is applicable and (4.14.5) becomes

c 41n2\'? ovg 1 évp _ _1_13112
(V) ~ T Svpdvg /2 (41n 2)‘/25vg 7761)&2,
1fdvo) _ gy (o) (4.14.8)

B VIR R
where gf)H '(vo) is the line-center small-signal gain for the homogeneously broadened
transition with Lorentzian HWHM &vy. In this power-broadened limit we recover the
factor 1/[1 + I,,,/I}:'] characteristic of homogeneous broadening.

Inhomogeneously broadened lasers, and in particular Doppler-broadened lasers, are
generally much more complicated to treat theoretically than homogeneously broadened
lasers, especially if counterpropagating traveling waves and spatial hole burning are
taken into account.

4.15 SUMMARY

In Chapter 1 we gave a very crude description of laser action and introduced some fun-
damental concepts such as gain and threshold. In the intervening chapters we have gone
more deeply into the theory of the interaction of light and matter, and in the present chap-
ter we have begun to apply what we have learned to laser theory.

The most important theoretical tools for our understanding of lasers are the rate
equations for level populations and field intensities. These equations generally include
effects of pumping, collisions, absorption, spontaneous and stimulated emission, field
gain and loss, and other processes that may be pertinent for a particular laser. We
have used such equations to discuss three- and four-level lasers, and in fact the use ‘of
rate equations will be a dominant theme of the following chapters. We have also dis-
cussed the concept of saturation which, as we will see in the next chapter, is a major con-
sideration in determining how much output power can be obtained with a given laser.
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PROBLEMS

4.1. Show how (3.12.5) and (4.3.4a) are modified if the light propagates toward —z
rather than +z, and derive (4.3.4b).

4.2. (a) Solve (4.5.7) as a function of time for the (unusual) case that the equation’s loss
parameters satisfy I';; + A = (¢/2L)(1 — r, r,). Give the steady-state value
of ny, + q,.
(b) Find the steady-state solution for g, in terms of p and n, for arbitrary loss
parameters.

4.3. (a) Write the full set of equations for a three-level laser by modifying (4.7.4) and
including the following equation for the third level (as shown in Fig. 4.6): dN; /
dt = PN; — I'5,N3, and show that the full set of equations satisfies N; + N, +
N3 = constant = N,
(b) Determine the steady-state values of the three level populations.

(c) Find the condition under which it is satisfactory to neglect level 3 [N ~ 0] and
to use Eqgs. (4.7.2) and (4.7.4) as written in the text.

4.4. Solve Egs. (4.8.1) for the steady-state value of N, — N, and show that (4.8.4) gives
the limiting value as the stimulated emission rate decreases to zero.

4.5. Estimate the density of chromium ions in ruby, assuming that the concentration of
chromium in ruby is about 0.05% by weight.

4.6. (a) Calculate the transition dipole moment ¢| x,, | for the 381 pF=2,M=2)
3P3/»(F = 3, M = 3) transition of sodium.

(b) What is the oscillator strength of this transition?

4.7. Derive the formula analogous to (4.12.3) for a four-level laser, and write the
expression for the saturation intensity.

4.8. Show that the saturation intensity /i of a three-level laser [Eq. (4.12.6)] is the
intensity for which the stimulated emission rate is the average of the upper- and
lower-level decay rates of the laser transition. Find the corresponding expression
that follows from laser equations (4.5.2).

4.9. (a) A gain cell of length 10 cm has a small-signal gain coefficient of 0.025 cm ™"
Two mirrors having the same reflectivity are placed at the ends of the cell.
Assuming that scattering losses are negligible, calculate the reflectivity necess-
ary for lasing.

(b) If the gain curve has a FWHM width of 1 GHz, what is the maximum number
of modes that can lase?



